Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(24)2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38138982

RESUMO

Antisense oligodeoxynucleotides (ASOs) have long been used to selectively inhibit or modulate gene expression at the RNA level, and some ASOs are approved for clinical use. However, the practicability of antisense technologies remains limited by the difficulty of reliably predicting the sites accessible to ASOs in complex folded RNAs. Recently, we applied a plant-based method that reproduces RNA-induced RNA silencing in vitro to reliably identify sites in target RNAs that are accessible to small interfering RNA (siRNA)-guided Argonaute endonucleases. Here, we show that this method is also suitable for identifying ASOs that are effective in DNA-induced RNA silencing by RNases H. We show that ASOs identified in this way that target a viral genome are comparably effective in protecting plants from infection as siRNAs with the corresponding sequence. The antiviral activity of the ASOs could be further enhanced by chemical modification. This led to two important conclusions: siRNAs and ASOs that can effectively knock down complex RNA molecules can be identified using the same approach, and ASOs optimized in this way could find application in crop protection. The technology developed here could be useful not only for effective RNA silencing in plants but also in other organisms.


Assuntos
Antivirais , Interferência de RNA , RNA Interferente Pequeno/metabolismo , RNA Mensageiro/genética , Antivirais/farmacologia
2.
Cell Mol Biol Lett ; 28(1): 64, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37550627

RESUMO

BACKGROUND: In plants, RNase III Dicer-like proteins (DCLs) act as sensors of dsRNAs and process them into short 21- to 24-nucleotide (nt) (s)RNAs. Plant DCL4 is involved in the biogenesis of either functional endogenous or exogenous (i.e. viral) short interfering (si)RNAs, thus playing crucial antiviral roles. METHODS: In this study we expressed plant DCL4 in Saccharomyces cerevisiae, an RNAi-depleted organism, in which we could highlight the role of dicing as neither Argonautes nor RNA-dependent RNA polymerase is present. We have therefore tested the DCL4 functionality in processing exogenous dsRNA-like substrates, such as a replicase-assisted viral replicon defective-interfering RNA and RNA hairpin substrates, or endogenous antisense transcripts. RESULTS: DCL4 was shown to be functional in processing dsRNA-like molecules in vitro and in vivo into 21- and 22-nt sRNAs. Conversely, DCL4 did not efficiently process a replicase-assisted viral replicon in vivo, providing evidence that viral RNAs are not accessible to DCL4 in membranes associated in active replication. Worthy of note, in yeast cells expressing DCL4, 21- and 22-nt sRNAs are associated with endogenous loci. CONCLUSIONS: We provide new keys to interpret what was studied so far on antiviral DCL4 in the host system. The results all together confirm the role of sense/antisense RNA-based regulation of gene expression, expanding the sense/antisense atlas of S. cerevisiae. The results described herein show that S. cerevisiae can provide insights into the functionality of plant dicers and extend the S. cerevisiae tool to new biotechnological applications.


Assuntos
Proteínas de Plantas , Saccharomyces cerevisiae , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Interferência de RNA , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ribonuclease III/genética , Ribonuclease III/metabolismo , RNA de Cadeia Dupla/genética , RNA Interferente Pequeno/metabolismo
3.
Plant J ; 113(3): 460-477, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36495314

RESUMO

Natural antisense long non-coding RNAs (lncNATs) are involved in the regulation of gene expression in plants, modulating different relevant developmental processes and responses to various stimuli. We have identified and characterized two lncNATs (NAT1UGT73C6 and NAT2UGT73C6 , collectively NATsUGT73C6 ) from Arabidopsis thaliana that are transcribed from a gene fully overlapping UGT73C6, a member of the UGT73C subfamily of genes encoding UDP-glycosyltransferases (UGTs). Expression of both NATsUGT73C6 is developmentally controlled and occurs independently of the transcription of UGT73C6 in cis. Downregulation of NATsUGT73C6 levels through artificial microRNAs results in a reduction of the rosette area, while constitutive overexpression of NAT1UGT73C6 or NAT2UGT73C6 leads to the opposite phenotype, an increase in rosette size. This activity of NATsUGT73C6 relies on its RNA sequence and, although modulation of UGT73C6 in cis cannot be excluded, the observed phenotypes are not a consequence of the regulation of UGT73C6 in trans. The NATsUGT73C6 levels were shown to affect cell proliferation and thus individual leaf size. Consistent with this concept, our data suggest that the NATsUGT73C6 influence the expression levels of key transcription factors involved in regulating leaf growth by modulating cell proliferation. These findings thus reveal an additional regulatory layer on the process of leaf growth. In this work, we characterized at the molecular level two long non-coding RNAs (NATsUGT73C6 ) that are transcribed in the opposite direction to UGT73C6, a gene encoding a glucosyltransferase involved in brassinosteroid homeostasis in A. thaliana. Our results indicate that NATsUGT73C6 expression influences leaf growth by acting in trans and by modulating the levels of transcription factors that are involved in the regulation of cell proliferation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Glucosiltransferases , RNA Longo não Codificante , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Genes de Plantas , Fenótipo , RNA Antissenso/genética , RNA Antissenso/metabolismo , RNA Longo não Codificante/genética , Fatores de Transcrição/metabolismo , Glucosiltransferases/genética
4.
Viruses ; 14(7)2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35891512

RESUMO

A new partititvirus isolated from a Trichoderma harzianum strain (T673), collected in China, was characterized and annotated as Trichoderma harzianum partitivirus 2 (ThPV2). The genome of ThPV2 consists of a 1693 bp dsRNA1 encoding a putative RNA-dependent RNA polymerase (RdRp) and a 1458 bp dsRNA2 encoding a hypothetical protein. In comparative studies employing the ThPV2-infected strain (T673) and a strain cured by ribavirin treatment (virus-free strain T673-F), we investigated biological effects of ThPV2 infection. While the growth rate of the virus-infected fungus differed little from that of the cured variant, higher mycelial density, conidiospore, and chlamydospore production were observed in the virus-infected strain T673. Furthermore, both the ThPV2-infected and the cured strain showed growth- and development-promoting activities in cucumber plants. In vitro confrontation tests showed that strains T673 and T673-F inhibited several important fungal pathogens and an oomycete pathogen in a comparable manner. Interestingly, in experiments with cucumber seeds inoculated with Fusarium oxysporum f. sp. cucumerinum, the ThPV2-infected strain T673 showed moderately but statistically significantly improved biocontrol activity when compared with strain T673-F. Our data broaden the spectrum of known mycoviruses and provide relevant information for the development of mycoviruses for agronomic applications.


Assuntos
Micovírus , Hypocreales , Trichoderma , Micovírus/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Esporos Fúngicos
5.
Int J Mol Sci ; 23(9)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35563369

RESUMO

Many plant viruses express suppressor proteins (VSRs) that can inhibit RNA silencing, a central component of antiviral plant immunity. The most common activity of VSRs is the high-affinity binding of virus-derived siRNAs and thus their sequestration from the silencing process. Since siRNAs share large homologies with miRNAs, VSRs like the Tombusvirus p19 may also bind miRNAs and in this way modulate cellular gene expression at the post-transcriptional level. Interestingly, the binding affinity of p19 varies considerably between different miRNAs, and the molecular determinants affecting this property have not yet been adequately characterized. Addressing this, we analyzed the binding of p19 to the miRNAs 162 and 168, which regulate the expression of the important RNA silencing constituents Dicer-like 1 (DCL1) and Argonaute 1 (AGO1), respectively. p19 binds miRNA162 with similar high affinity as siRNA, whereas the affinity for miRNA168 is significantly lower. We show that specific molecular features, such as mismatches and 'G-U wobbles' on the RNA side and defined amino acid residues on the VSR side, mediate this property. Our observations highlight the remarkable adaptation of VSR binding affinities to achieve differential effects on host miRNA activities. Moreover, they show that even minimal changes, i.e., a single base pair in a miRNA duplex, can have significant effects on the efficiency of the plant antiviral immune response.


Assuntos
MicroRNAs , Tombusvirus , Antivirais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Imunidade Vegetal/genética , Interferência de RNA , RNA de Cadeia Dupla/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Tombusvirus/genética
6.
RNA Biol ; 18(6): 843-853, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32924750

RESUMO

Proper base-pairing of a miRNA with its target mRNA is a key step in miRNA-mediated mRNA repression. RNA remodelling by RNA-binding proteins (RBPs) can improve access of miRNAs to their target mRNAs. The largest isoform p45 of the RBP AUF1 has previously been shown to remodel viral or AU-rich RNA elements. Here, we show that AUF1 is capable of directly promoting the binding of the miRNA let-7b to its target site within the 3'UTR of the POLR2D mRNA. Our data suggest this occurs in two ways. First, the helix-destabilizing RNA chaperone activity of AUF1 disrupts a stem-loop structure of the target mRNA and thus exposes the miRNA target site. Second, the RNA annealing activity of AUF1 drives hybridization of the miRNA and its target site within the mRNA. Interestingly, the RNA remodelling activities of AUF1 were found to be isoform-specific. AUF1 isoforms containing a YGG motif are competent RNA chaperones, whereas isoforms lacking the YGG motif are not. Overall, our study demonstrates that AUF1 has the ability to modulate a miRNA-target site interaction, thus revealing a new regulatory function for AUF1 proteins during post-transcriptional control of gene expression. Moreover, tests with other RBPs suggest the YGG motif acts as a key element of RNA chaperone activity.


Assuntos
Processamento Alternativo , Ribonucleoproteína Nuclear Heterogênea D0/genética , MicroRNAs/genética , RNA Mensageiro/genética , Motivos de Ligação ao RNA/genética , Regiões 3' não Traduzidas/genética , Algoritmos , Sequência de Aminoácidos , Regulação da Expressão Gênica , Ribonucleoproteína Nuclear Heterogênea D0/metabolismo , Humanos , Cinética , MicroRNAs/metabolismo , Ligação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , RNA Mensageiro/metabolismo
7.
New Phytol ; 229(3): 1650-1664, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32945560

RESUMO

Viral infections are accompanied by a massive production of small interfering RNAs (siRNAs) of plant origin, such as virus-activated (va)siRNAs, which drive the widespread silencing of host gene expression, and whose effects in plant pathogen interactions remain unknown. By combining phenotyping and molecular analyses, we characterized vasiRNAs that are associated with typical mosaic symptoms of cauliflower mosaic virus infection in two crops, turnip (Brassica rapa) and oilseed rape (Brassica napus), and the reference plant Arabidopsis thaliana. We identified 15 loci in the three infected plant species, whose transcripts originate vasiRNAs. These loci appear to be generally affected by virus infections in Brassicaceae and encode factors that are centrally involved in photosynthesis and stress response, such as Rubisco activase (RCA), senescence-associated protein, heat shock protein HSP70, light harvesting complex, and membrane-related protein CP5. During infection, the expression of these factors is significantly downregulated, suggesting that their silencing is a central component of the plant's response to virus infections. Further findings indicate an important role for 22 nt long vasiRNAs in the plant's endogenous RNA silencing response. Our study considerably enhances knowledge about the new class of vasiRNAs that are triggered in virus-infected plants and will help to advance strategies for the engineering of gene clusters involved in the development of crop diseases.


Assuntos
Arabidopsis , Vírus de Plantas , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Fotossíntese , Doenças das Plantas/genética , Vírus de Plantas/genética , RNA Interferente Pequeno
8.
Viruses ; 12(1)2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31952291

RESUMO

The 3'-terminal stem-loop (3'SL) of the RNA genome of the flavivirus West Nile (WNV) harbors, in its stem, one of the sequence elements that are required for genome cyclization. As cyclization is a prerequisite for the initiation of viral replication, the 3'SL was proposed to act as a replication silencer. The lower part of the 3'SL is metastable and confers a structural flexibility that may regulate the switch from the linear to the circular conformation of the viral RNA. In the human system, we previously demonstrated that a cellular RNA-binding protein, AUF1 p45, destabilizes the 3'SL, exposes the cyclization sequence, and thus promotes flaviviral genome cyclization and RNA replication. By investigating mutant RNAs with increased 3'SL stabilities, we showed the specific conformation of the metastable element to be a critical determinant of the helix-destabilizing RNA chaperone activity of AUF1 p45 and of the precision and efficiency of the AUF1 p45-supported initiation of RNA replication. Studies of stability-increasing mutant WNV replicons in human and mosquito cells revealed that the cultivation temperature considerably affected the replication efficiencies of the viral RNA variants and demonstrated the silencing effect of the 3'SL to be temperature dependent. Furthermore, we identified and characterized mosquito proteins displaying similar activities as AUF1 p45. However, as the RNA remodeling activities of the mosquito proteins were found to be considerably lower than those of the human protein, a potential cell protein-mediated destabilization of the 3'SL was suggested to be less efficient in mosquito cells. In summary, our data support a model in which the 3'SL acts as an RNA thermometer that modulates flavivirus replication during host switching.


Assuntos
Regiões 3' não Traduzidas , Interações entre Hospedeiro e Microrganismos/genética , Sequências Repetidas Invertidas , RNA Viral/genética , Replicação Viral/genética , Vírus do Nilo Ocidental/genética , Animais , Carcinoma Hepatocelular , Linhagem Celular Tumoral , Culicidae/citologia , Culicidae/genética , Culicidae/virologia , Genoma Viral , Ribonucleoproteína Nuclear Heterogênea D0/genética , Humanos , Proteínas de Insetos/genética , Mutação , Conformação de Ácido Nucleico , Proteínas de Ligação a RNA/genética , Vírus do Nilo Ocidental/fisiologia
9.
Methods Mol Biol ; 2106: 89-106, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31889252

RESUMO

RNA-binding proteins with an RNA chaperone activity exert either one or both of the following catalytic activities: (1) RNA annealing, i.e., the protein supports intra- as well as intermolecular RNA-RNA interactions and (2) strand displacement, i.e., the protein mediates the exchange of individual strands of a preexisting RNA duplex. To discriminate and further characterize these activities, it requires defined assay systems. These are based on entirely or partially complementary RNA oligonucleotides that are labeled with fluorescent and/or quencher dyes. The non-catalyzed and the protein-supported associations of the RNA molecules are followed by a real-time fluorescence resonance energy transfer (FRET) system. By site-specific modification of the RNAs or the protein, the substrate- and protein-specific parameters of the RNA chaperone activity can be explored and identified.In this chapter, we present strategies on the design of labeled RNA molecules to be used to characterize the activities of an RNA-binding protein and explain how to monitor progress curves of RNA annealing and strand displacement reactions in single cuvette or well-plate scales. We provide sets of equations and models to determine and analyze different types of reactions, e.g., by calculation of first- and second-order rate constants. Likewise, we demonstrate how to exploit these simple experimental setups to elucidate elementary principles of the reaction mechanisms performed by the protein of interest by applying basic kinetic applications, such as ARRHENIUS and linear free energy relationship analyses. These approaches will be explained by providing example plots and graphs from experiments investigating the RNA chaperone activities of the RNA-binding proteins NF90-NF45 and AUF1 p45.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Chaperonas Moleculares/metabolismo , Estabilidade de RNA , RNA Interferente Pequeno/química , Animais , Carbocianinas/química , Corantes Fluorescentes/química , Ribonucleoproteína Nuclear Heterogênea D0/química , Ribonucleoproteína Nuclear Heterogênea D0/metabolismo , Humanos , Sequências Repetidas Invertidas , Chaperonas Moleculares/química , Proteínas do Fator Nuclear 90/química , Proteínas do Fator Nuclear 90/metabolismo , RNA Interferente Pequeno/metabolismo
10.
Methods Mol Biol ; 2106: 179-192, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31889258

RESUMO

RNA structure probing enables the characterization of RNA secondary structures by established procedures such as the enzyme- or chemical-based detection of single- or double-stranded regions. A specific type of application involves the detection of changes of RNA structures and conformations that are induced by proteins with RNA chaperone activity. This chapter outlines a protocol to analyze RNA structures in vitro in the presence of an RNA-binding protein with RNA chaperone activity. For this purpose, we make use of the methylating agents dimethyl sulfate (DMS) and 1-cyclohexyl-3-(2-morpholinoethyl) carbodiimide metho-p-toluenesulfonate (CMCT). DMS and CMCT specifically modify nucleotides that are not involved in base-pairing or tertiary structure hydrogen bonding and that are not protected by a ligand such as a protein. Modified bases are identified by primer extension. As an example, we describe how the RNA chaperone activity of an isoform of the RNA-binding protein AUF1 induces the flaviviral RNA switch required for viral genome cyclization and viral replication.This chapter includes comprehensive protocols for in vitro synthesis of RNA, 32P-5'-end labeling of DNA primers, primer extension, as well as the preparation and running of analytical gels. The described methodology should be applicable to any other RNA and protein of interest to identify protein-directed RNA remodeling.


Assuntos
Chaperonas Moleculares/metabolismo , Técnicas de Sonda Molecular , Dobramento de RNA , RNA/química , Animais , CME-Carbodi-Imida/análogos & derivados , CME-Carbodi-Imida/química , Linhagem Celular , Humanos , Chaperonas Moleculares/química , RNA/metabolismo , Processamento Pós-Transcricional do RNA , Análise de Sequência de RNA/métodos , Ésteres do Ácido Sulfúrico/química
11.
Vaccine ; 37(37): 5578-5587, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31399274

RESUMO

Here we report on new subunit vaccines based on recombinant yeast of the type Kluyveromyces lactis (K. lactis), which protect mice from a lethal influenza A virus infection. Applying a genetic system that enables the rapid generation of transgenic yeast, we have developed K. lactis strains that express the influenza A virus hemagglutinin, HA, either individually or in combination with the viral M1 matrix protein. Subcutaneous application of the inactivated, but otherwise non-processed yeast material shows a complete protection of BALB/c mice in prime/boost and even one-shot/single dose vaccination schemes against a subsequent, lethal challenge with the cognate influenza virus. The yeast vaccines induce titers of neutralizing antibodies that are readily comparable to those induced by an inactivated virus vaccine. These data suggest that HA and M1 are produced with a high antigenicity in the yeast cells. Based on these findings, multivalent, DIVA-capable, yeast-based subunit vaccines may be developed as promising alternatives to conventional virus-based anti-flu vaccines for veterinary applications.


Assuntos
Vírus da Influenza A/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/prevenção & controle , Vacinação , Vacinas de DNA/imunologia , Vacinas de Subunidades/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Modelos Animais de Doenças , Expressão Gênica , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Humanos , Esquemas de Imunização , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/genética , Camundongos , Vacinação/métodos , Vacinas de DNA/administração & dosagem , Vacinas de DNA/genética , Vacinas de Subunidades/administração & dosagem , Vacinas de Subunidades/genética , Leveduras/genética , Leveduras/imunologia
12.
Nucleic Acids Res ; 47(17): 9343-9357, 2019 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-31433052

RESUMO

In response to a viral infection, the plant's RNA silencing machinery processes viral RNAs into a huge number of small interfering RNAs (siRNAs). However, a very few of these siRNAs actually interfere with viral replication. A reliable approach to identify these immunologically effective siRNAs (esiRNAs) and to define the characteristics underlying their activity has not been available so far. Here, we develop a novel screening approach that enables a rapid functional identification of antiviral esiRNAs. Tests on the efficacy of such identified esiRNAs of a model virus achieved a virtual full protection of plants against a massive subsequent infection in transient applications. We find that the functionality of esiRNAs depends crucially on two properties: the binding affinity to Argonaute proteins and the ability to access the target RNA. The ability to rapidly identify functional esiRNAs could be of great benefit for all RNA silencing-based plant protection measures against viruses and other pathogens.


Assuntos
Doenças das Plantas/genética , RNA Interferente Pequeno/genética , Replicação Viral/genética , Antivirais/imunologia , Antivirais/farmacologia , Arabidopsis/genética , Arabidopsis/virologia , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/imunologia , Doenças das Plantas/imunologia , Doenças das Plantas/virologia , Interferência de RNA/imunologia , RNA Interferente Pequeno/imunologia , RNA Interferente Pequeno/farmacologia
13.
RNA Biol ; 16(7): 960-971, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30951406

RESUMO

The RNA-binding protein AUF1 regulates post-transcriptional gene expression by affecting the steady state and translation levels of numerous target RNAs. Remodeling of RNA structures by the largest isoform AUF1 p45 was recently demonstrated in the context of replicating RNA viruses, and involves two RNA remodeling activities, i.e. an RNA chaperone and an RNA annealing activity. AUF1 contains two non-identical RNA recognition motifs (RRM) and one RGG/RG motif located in the C-terminus. In order to determine the functional significance of each motif to AUF1's RNA-binding and remodeling activities we performed a comprehensive mutagenesis study and characterized the wildtype AUF1, and several variants thereof. We demonstrate that each motif contributes to efficient RNA binding and remodeling by AUF1 indicating a tight cooperation of the RRMs and the RGG/RG motif. Interestingly, the data identify two distinct roles for the arginine residues of the RGG/RG motif for each RNA remodeling activity. First, arginine-mediated stacking interactions promote AUF1's helix-destabilizing RNA chaperone activity. Second, the electropositive character of the arginine residues is the major driving force for the RNA annealing activity. Thus, we provide the first evidence that arginine residues of an RGG/RG motif contribute to the mechanism of RNA annealing and RNA chaperoning.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas Grupo D/química , Ribonucleoproteínas Nucleares Heterogêneas Grupo D/metabolismo , RNA/metabolismo , Motivos de Aminoácidos , Arginina/metabolismo , Sequência de Bases , Ribonucleoproteína Nuclear Heterogênea D0 , Ligação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , RNA/química , RNA/genética , Relação Estrutura-Atividade , Termodinâmica
14.
mBio ; 9(2)2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29691336

RESUMO

Many viral suppressors (VSRs) counteract antiviral RNA silencing, a central component of the plant's immune response by sequestration of virus-derived antiviral small interfering RNAs (siRNAs). Here, we addressed how VSRs affect the activities of cellular microRNAs (miRNAs) during a viral infection by characterizing the interactions of two unrelated VSRs, the Tombusvirus p19 and the Cucumovirus 2b, with miRNA 162 (miR162), miR168, and miR403. These miRNAs regulate the expression of the important silencing factors Dicer-like protein 1 (DCL1) and Argonaute proteins 1 and 2 (AGO1 and AGO2), respectively. Interestingly, while the two VSRs showed similar binding profiles, the miRNAs were bound with significantly different affinities, for example, with the affinity of miR162 greatly exceeding that of miR168. In vitro silencing experiments revealed that p19 and 2b affect miRNA-mediated silencing of the DCL1, AGO1, and AGO2 mRNAs in strict accordance with the VSR's miRNA-binding profiles. In Tombusvirus-infected plants, the miRNA-binding behavior of p19 closely corresponded to that in vitro Most importantly, in contrast to controls with a Δp19 virus, infections with wild-type (wt) virus led to changes of the levels of the miRNA-targeted mRNAs, and these changes correlated with the miRNA-binding preferences of p19. This was observed exclusively in the early stage of infection when viral genomes are proposed to be susceptible to silencing and viral siRNA (vsiRNA) concentrations are low. Accordingly, our study suggests that differential binding of miRNAs by VSRs is a widespread viral mechanism to coordinately modulate cellular gene expression and the antiviral immune response during infection initiation.IMPORTANCE Plant viruses manipulate their hosts in various ways. Viral suppressor proteins (VSRs) interfere with the plant's immune response by sequestering small, antivirally acting vsiRNAs, which are processed from viral RNAs during the plant's RNA-silencing response. Here, we examined the effects of VSRs on cellular microRNAs (miRNAs), which show a high degree of similarity with vsiRNAs. Binding experiments with two unrelated VSRs and three important regulatory miRNAs revealed that the proteins exhibit similar miRNA-binding profiles but bind different miRNAs at considerably different affinities. Most interestingly, experiments in plants showed that in the early infection phase, the Tombusvirus VSR p19 modulates the activity of these miRNAs on their target mRNAs very differently and that this differential regulation strictly correlates with the binding affinities of p19 for the respective miRNAs. Our data suggest that VSRs may specifically control plant gene expression and the early immune response by differential sequestration of miRNAs.


Assuntos
Cucumovirus/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , MicroRNAs/metabolismo , Doenças das Plantas/imunologia , Imunidade Vegetal , Tombusvirus/crescimento & desenvolvimento , Arabidopsis , Cucumovirus/imunologia , Doenças das Plantas/virologia , Tombusvirus/imunologia
15.
Vaccine ; 36(17): 2314-2320, 2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29567034

RESUMO

Potent adjuvant systems are required for subunit and single antigen based vaccines to provide sufficient immunogenicity. Furthermore, adjuvants can reduce the required number of immunisations and the antigen amount. Squalene nanoemulsions, like MF59® and AddaVax™, are potent, safe and well characterised adjuvant systems and approved for use in humans. Here, we developed squalene containing solid lipid nanoparticles, which can be sterilised by steam sterilisation and stored as freeze-dried power together with a yeast-based vaccine. Detailed size measurements using dynamic and static light scattering were applied, as the immune stimulating effect of squalene emulsions is mainly dependent on the particle size. The size range of AddaVax™ (120-170 nm) was favoured for the developed squalene containing solid lipid nanoparticles. Differential scanning calorimetry (DSC) and H NMR studies were performed to characterise the interactions of the incorporated liquid squalene with the solid hard fat matrix. A homogeneous distribution as liquid domains in the solid glyceride structure was suggested for the liquid squalene. The developed adjuvant was compared with Freund's adjuvant and a commercially available squalene nanoemulsion in a vaccine trial in the mouse model with a yeast-based vaccine directed against the infectious bursal disease virus. All squalene-based adjuvants showed excellent biocompatibility and provided immune stimulating properties comparable to Freund's adjuvant.


Assuntos
Adjuvantes Imunológicos/química , Adjuvante de Freund/química , Lipídeos/química , Nanopartículas/química , Esqualeno/química , Vacinas/química , Fermento Seco/química , Animais , Infecções por Birnaviridae/imunologia , Emulsões/química , Feminino , Adjuvante de Freund/imunologia , Imunização/métodos , Vírus da Doença Infecciosa da Bursa/imunologia , Lipídeos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Tamanho da Partícula , Esqualeno/imunologia , Vacinas/imunologia , Fermento Seco/imunologia
16.
J Virol ; 92(6)2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29263261

RESUMO

In previous studies, we showed that the cellular RNA-binding protein AUF1 supports the replication process of the flavivirus West Nile virus. Here we demonstrate that the protein also enables effective proliferation of dengue virus and Zika virus, indicating that AUF1 is a general flavivirus host factor. Further studies demonstrated that the AUF1 isoform p45 significantly stimulates the initiation of viral RNA replication and that the protein's RNA chaperone activity enhances the interactions of the viral 5'UAR and 3'UAR genome cyclization sequences. Most interestingly, we observed that AUF1 p45 destabilizes not only the 3'-terminal stem-loop (3'SL) but also 5'-terminal stem-loop B (SLB) of the viral genome. RNA structure analyses revealed that AUF1 p45 increases the accessibility of defined nucleotides within the 3'SL and SLB and, in this way, exposes both UAR cyclization elements. Conversely, AUF1 p45 does not modulate the fold of stem-loop A (SLA) at the immediate genomic 5' end, which is proposed to function as a promoter of the viral RNA-dependent RNA polymerase (RdRp). These findings suggest that AUF1 p45, by destabilizing specific stem-loop structures within the 5' and 3' ends of the flaviviral genome, assists genome cyclization and concurrently enables the RdRp to initiate RNA synthesis. Our study thus highlights the role of a cellular RNA-binding protein inducing a flaviviral RNA switch that is crucial for viral replication.IMPORTANCE The genus Flavivirus within the Flaviviridae family includes important human pathogens, such as dengue, West Nile, and Zika viruses. The initiation of replication of the flaviviral RNA genome requires a transformation from a linear to a cyclized form. This involves considerable structural reorganization of several RNA motifs at the genomic 5' and 3' ends. Specifically, it needs a melting of stem structures to expose complementary 5' and 3' cyclization elements to enable their annealing during cyclization. Here we show that a cellular RNA chaperone, AUF1 p45, which supports the replication of all three aforementioned flaviviruses, specifically rearranges stem structures at both ends of the viral genome and in this way permits 5'-3' interactions of cyclization elements. Thus, AUF1 p45 triggers the RNA switch in the flaviviral genome that is crucial for viral replication. These findings represent an important example of how cellular (host) factors promote the propagation of RNA viruses.


Assuntos
Flavivirus/fisiologia , Genoma Viral , Ribonucleoproteínas Nucleares Heterogêneas Grupo D/metabolismo , Conformação de Ácido Nucleico , RNA Viral/metabolismo , Replicação Viral/fisiologia , Ribonucleoproteína Nuclear Heterogênea D0 , Ribonucleoproteínas Nucleares Heterogêneas Grupo D/química , Ribonucleoproteínas Nucleares Heterogêneas Grupo D/genética , Humanos , RNA Viral/química , RNA Viral/genética , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo
17.
Nucleic Acids Res ; 45(21): 12441-12454, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29040738

RESUMO

The heterodimer NF90-NF45 is an RNA-binding protein complex that modulates the expression of various cellular mRNAs on the post-transcriptional level. Furthermore, it acts as a host factor that supports the replication of several RNA viruses. The molecular mechanisms underlying these activities have yet to be elucidated. Recently, we showed that the RNA-binding capabilities and binding specificity of NF90 considerably improves when it forms a complex with NF45. Here, we demonstrate that NF90 has a substrate-selective RNA chaperone activity (RCA) involving RNA annealing and strand displacement activities. The mechanism of the NF90-catalyzed RNA annealing was elucidated to comprise a combination of 'matchmaking' and compensation of repulsive charges, which finally results in the population of dsRNA products. Heterodimer formation with NF45 enhances 'matchmaking' of complementary ssRNAs and substantially increases the efficiency of NF90's RCA. During investigations of the relevance of the NF90-NF45 RCA, the complex was shown to stimulate the first step in the RNA replication process of hepatitis C virus (HCV) in vitro and to stabilize a regulatory element within the mRNA of vascular endothelial growth factor (VEGF) by protein-guided changes of the RNAs' structures. Thus, our study reveals how the intrinsic properties of an RNA-binding protein determine its biological activities.


Assuntos
Proteína do Fator Nuclear 45/metabolismo , Proteínas do Fator Nuclear 90/metabolismo , RNA Viral/química , RNA/química , Riboswitch , Motivos de Aminoácidos , Dimerização , Hepacivirus/genética , Proteína do Fator Nuclear 45/química , Proteínas do Fator Nuclear 90/química , Conformação de Ácido Nucleico , RNA/metabolismo , RNA Mensageiro/química , RNA Viral/biossíntese , Fator A de Crescimento do Endotélio Vascular/genética
18.
Biochem J ; 474(2): 259-280, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-28062840

RESUMO

Nuclear factor 90 (NF90) is an RNA-binding protein (RBP) that regulates post-transcriptionally the expression of various mRNAs. NF90 was recently shown to be capable of discriminating between different RNA substrates. This is mediated by an adaptive and co-operative interplay between three RNA-binding motifs (RBMs) in the protein's C-terminus. In many cell types, NF90 exists predominantly in a complex with NF45. Here, we compared the RNA-binding properties of the purified NF90 monomer and the NF90-NF45 heterodimer by biophysical and biochemical means, and demonstrate that the interaction with NF45 considerably affects the characteristics of NF90. Along with a thermodynamic stabilization, complex formation substantially improves the RNA-binding capacity of NF90 by modulating its binding mode and by enhancing its affinity for single- and double-stranded RNA substrates. Our data suggest that features of both the N- and C-termini of NF90 participate in the heterodimerization with NF45 and that the formation of NF90-NF45 changes the conformation of NF90's RBMs to a status in which the co-operative interplay of the RBMs is optimal. NF45 is considered to act as a conformational scaffold for NF90's RBMs, which alters the RNA-binding specificity of NF90. Accordingly, the monomeric NF90 and the NF90-NF45 heterodimer may exert different functions in the cell.


Assuntos
Proteína do Fator Nuclear 45/química , Proteínas do Fator Nuclear 90/química , RNA de Cadeia Dupla/química , Motivos de Aminoácidos , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Humanos , Cinética , Proteína do Fator Nuclear 45/genética , Proteína do Fator Nuclear 45/metabolismo , Proteínas do Fator Nuclear 90/genética , Proteínas do Fator Nuclear 90/metabolismo , Oligonucleotídeos/química , Oligonucleotídeos/metabolismo , Ligação Proteica , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Termodinâmica
19.
New Phytol ; 213(2): 916-928, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27468091

RESUMO

B chromosomes (Bs) are supernumerary, dispensable parts of the nuclear genome, which appear in many different species of eukaryote. So far, Bs have been considered to be genetically inert elements without any functional genes. Our comparative transcriptome analysis and the detection of active RNA polymerase II (RNAPII) in the proximity of B chromatin demonstrate that the Bs of rye (Secale cereale) contribute to the transcriptome. In total, 1954 and 1218 B-derived transcripts with an open reading frame were expressed in generative and vegetative tissues, respectively. In addition to B-derived transposable element transcripts, a high percentage of short transcripts without detectable similarity to known proteins and gene fragments from A chromosomes (As) were found, suggesting an ongoing gene erosion process. In vitro analysis of the A- and B-encoded AGO4B protein variants demonstrated that both possess RNA slicer activity. These data demonstrate unambiguously the presence of a functional AGO4B gene on Bs and that these Bs carry both functional protein coding genes and pseudogene copies. Thus, B-encoded genes may provide an additional level of gene control and complexity in combination with their related A-located genes. Hence, physiological effects, associated with the presence of Bs, may partly be explained by the activity of B-located (pseudo)genes.


Assuntos
Proteínas Argonautas/metabolismo , Cromossomos de Plantas/genética , Proteínas de Plantas/metabolismo , Secale/genética , Sequência de Bases , Núcleo Celular/metabolismo , Cromatina/metabolismo , Simulação por Computador , RNA Polimerases Dirigidas por DNA/metabolismo , Amplificação de Genes , Dosagem de Genes , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Genes de Plantas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Secale/enzimologia , Transcrição Gênica
20.
RNA ; 22(10): 1574-91, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27520967

RESUMO

A prerequisite for the intracellular replication process of the Flavivirus West Nile virus (WNV) is the cyclization of the viral RNA genome, which enables the viral replicase to initiate RNA synthesis. Our earlier studies indicated that the p45 isoform of the cellular AU-rich element binding protein 1 (AUF1) has an RNA chaperone activity, which supports RNA cyclization and viral RNA synthesis by destabilizing a stem structure at the WNV RNA's 3'-end. Here we show that in mammalian cells, AUF1 p45 is consistently modified by arginine methylation of its C terminus. By a combination of different experimental approaches, we can demonstrate that the methyltransferase PRMT1 is necessary and sufficient for AUF1 p45 methylation and that PRMT1 is required for efficient WNV replication. Interestingly, in comparison to the nonmethylated AUF1 p45, the methylated AUF1 p45(aDMA) exhibits a significantly increased affinity to the WNV RNA termini. Further data also revealed that the RNA chaperone activity of AUF1 p45(aDMA) is improved and the methylated protein stimulates viral RNA synthesis considerably more efficiently than the nonmethylated AUF1 p45. In addition to its destabilizing RNA chaperone activity, we identified an RNA annealing activity of AUF1 p45, which is not affected by methylation. Arginine methylation of AUF1 p45 thus represents a specific determinant of its RNA chaperone activity while functioning as a WNV host factor. Our data suggest that the methylation modifies the conformation of AUF1 p45 and in this way affects its RNA binding and restructuring activities.


Assuntos
Arginina/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo D/metabolismo , Processamento de Proteína Pós-Traducional , RNA Viral/genética , Regiões 3' não Traduzidas , Linhagem Celular Tumoral , Ribonucleoproteína Nuclear Heterogênea D0 , Ribonucleoproteínas Nucleares Heterogêneas Grupo D/genética , Humanos , Metilação , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , RNA Viral/metabolismo , Proteínas Repressoras/metabolismo , Replicação Viral , Vírus do Nilo Ocidental/genética , Vírus do Nilo Ocidental/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...